SQL:select * from knowledge_window.favourites where user_id='' and url_id='' ERROR:Table 'knowledge_window.favourites' doesn't exist
字词模式
句模式
段模式
系统设置
更多按钮
网址切换
保存状态
用户反馈
页面收藏
-AA+
奇妙的数字世界

1.数字黑洞 6174496

在自然数中还有一些数,看起来貌不惊人,但却十分特别,令人百思不得其解 6174就是其中之一.6174各位数字从大到小排列,再从小到大排列,然后用大数减小数,结果还得到 6174 7641-1467= 6174有趣的是,不仅 6174本身,就是任意一个四位数字,只要 4个数字不完全相同,用上述办法重复多次,最后终能得到 6174这个数.

例如: 1234这个数,我们用下列步聚运算:

4321-1234= 3087

8730-0378= 8352

8532-2358= 6174

再举一例,如 2883,则有:

8832-2388= 1998

9981-1899= 7982

9872-2789= 7083

7830-0387= 7443

7443-3447= 3996

9963-3699= 6264

6642-2466= 4176

7641-1467= 6174

对三位数字,用这个办法最终将得到 495.例如 867,运算如下:

876-678= 198

981-189= 792

972-279= 693

963-369= 594

954-459= 495

你还可以用其它数字来验证一下,看看对不对五位以上的数字,这个规律就不明显了

2.两边对称的数——回文数

自然数中有一类数被称为回文数。回文数就是一个数的两边对称,如 111211221933930203等等。回文数本身倒也没有什么奇特。不过人们发现大多数的自然数,如果把它各位数字的顺序倒置,再与原数相加,将得数再按上述步骤进行,经过有限的步骤后必能得到一个回文数:

如: 95+ 59= 154

154+ 451= 605

605+ 506= 1111

1111就是一个回文数

又如: 198+ 891= 1089

1089+ 9801= 10890

10890+ 09801= 20691

20691+ 19602= 40293

40293+ 39204= 79497

79497又是一个回文数

是不是所有的自然数都有这个性质呢?不是例如三位数中的 196似乎用上述办法就得不到回文数.有人用计算机对 196用上述办法重复十万次,仍然没有得到回文数.但至今还没有人能用数学证明办法对这个问题下结论,所有“ 196问题”也成了世界性数学难题之一.经过计算,在前十万个自然数中有 5996个数就像 196一样很难得到回文数.